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FUNDAMENTAL SKIN EFFECT
IN ANISOTROPIC SOLID MECHANICS*

M. A. Bior

New York, N.Y.

Abstract—It is shown that in solid mechanics a skin effect is associated with anisotropy. Near a free surface
or a surface of discontinuity certain components of the stress field vary rapidly from zero to a maximum within
a thin skin. The thickness of this skin tends to vanish for increasing anisotropy. A stress concentration also
occurs whereby certain stress components are amplified within the skin thickness. The analysis is carried out
for a medium with or without initial stress and includes the case of surface instability, internal buckling and
surface wave propagation. The results presented in the context of elasticity theory are on the whole valid for
viscoelastic media by the principle of correspondence. The results are also applicable to multilayered or fibrous
compound materials which, on the average, behave approximately as anisotropic continuous media.

1. INTRODUCTION

THE GENERAL equations used in the classical theories of deformation of anisotropic solids
are very complex and involve many variables and elastic coefficients. As a consequence
characteristic properties due to anisotropy and relevant parameters do not seem to have
been fully recognized.

Our purpose here is to show that a basic feature in the mechanics of anisotropic
solid is the appearance of a skin effect. The phenomenon referred to here will appear
for example near a free surface where certain components of the stress field will vary
very rapidly from zero to a maximum value within a thin skin. The thickness of the
skin depends on the magnitude of the anisotropy and tends to zero when the anisotropy
becomes very large. A skin effect will also occur near a rigid adhering boundary or in
the vicinity of a surface of discontinuity.

Another phenomenon associated with the skin effect is a stress concentration whereby
certain stress components within the skin thickness are magnified increasingly with
increasing anisotropy.

In order to bring out these features in the simplest possible way, we have considered
the restricted problem of plane-strain elasticity for an orthotropic incompressible solid.
Some of the significant features due to finite deformation have also been included by
applying the theory of elasticity of initially stressed solids.

The skin effect is analyzed in detail for three types of problems. The first is treated
in Section 3 where the effect is derived for a surface under tangential loading. In Section
5 the skin effect is shown to appear in the buckling modes due to surface instability
when a compressive stress is acting in a direction parallel to the surface. For internal
buckling under initial stress the skin effect appears near a free surface or a rigid adhering
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646 M. A. Biot

boundary as shown in Sections 6 and 7.

It is remarkable that in all these cases the skin thickness is expressed by the same
formula 6 = #/2n./(2m) where # is the wave length of the deformation along the
surface of discontinuity and m is a fundamental dimensionless parameter measuring the
magnitude of the anisotropy.

The result is by no means restricted by the simplifying assumption of incompressibility.
A brief discussion in Section 8 indicates that the same parameter m determines the skin
thickness for an anisotropic compressible medium provided we use for m the value
obtained in earlier theories in terms of the various elastic coeflicients of the anisotropic
solid. The generalization including compressibility is valid for initially stressed solids.
As indicated in the last section, the principle of viscoelastic correspondence suggests
further generalizations of these results to purely viscous and viscoelastic anisotropic
solids.

While the skin effect becomes more significant with increasing anisotropy its impor-
tance is not confined to such cases. Actually the effect brings to light certain fundamental
properties of elastic solutions which are already present for isotropic media. These
properties provide a new outlook and suggest new methods of attack in many practical
problems of ““‘Strength of Materials.”

Another important field of application of these results is the mechanics of thinly
layered or fibrous structures where the anisotropy is due to the use of composite materials
of strongly contrasting rigidities. By viscoelastic correspondence this includes the case
of heterogeneous media composed of different viscoelastic materials.

2. SIMPLIFIED EQUATIONS FOR ANISOTROPIC ELASTICITY

Consider a plane-strain deformation in the x, y plane. The material is assumed in-
compressible of orthotropic symmetry with axes of symmetry parallel to the x, y axes,
and initially stress-free.

The two-dimensional stress—strain relations of the material are

0..—0 = 2Ne,,
6,,—0 = 2Ne,, 2.1)
O,y = 2Qe,,
with a condition of incompressibility
Crete, =0 22

The usual stress components for plane strain are g,, 0,,0,, and the strain components
are defined by

ou ov

exx—a eyy=5);
1 60+0u
b = 3\5x " ay

where u and v are the displacement components in the x, y plane. The plane-strain
elastic properties are defined by the two elastic constants N and Q. The significance of

(2.3)
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o is obtained by adding the first two of equations (2.1) taking into account relation (2.2).
We find

0 = Ho.xt+0,) (2.4)

Equations (2.1) are a particular case of the incremental stress—strain relations derived by
the author for the initially stressed medium [1,2]. They are obviously applicable to a
medium initially stress-free. Note that the left side of equations (2.1) represents a two-
dimensional stress deviator. In the case of anisotropy it is different from the three-
dimensional stress deviator as already pointed out [1,2]. We must add the condition
of equilibrium of the stress field

90xx | 00y _
0x dy
s s (2.5)
dony B0y _
0x + dy
The set of equations (2.1) to (2.5) is solved by introducing the function ¢(x, y) and putting
_ 0 _0¢
u= -3 V=g (2.6)
Elimination of all variables except o and ¢ yields
0o 0 0% %o
~——[(2N—Q) A SV ]
dx 0dy
dc @ a2¢ o2 @7
g
d +6x|: _Q) +Q ]
Finally elimination of ¢ yields
o 2N ¢ 64¢
— ——1 =0. 2.8
6x4+2(Q )6x26y o @8)

The plane-strain problem is now reduced to finding ¢ and ¢ from equations (2.7) and
(2.8).

We shall consider solutions which are sinusoidal along the x direction. Such a solution
of equations (2.7) and (2.8) is

¢ = Tlff(ly) sin Ix

(2.9)
o= Q(mf' —f")coslIx
where f(ly) satisfies the differential equation
flll/_sz/l+f = 0‘ (2‘10)

The primes denote differentiation with respect to the argument Iy and we have put

m= %#1 @2.11)
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Stresses and displacements are now derived completely by means of a single unknown
function f in the following form

u = Ufly)sinix

v = V(ly)cos Ix
o, = r{ly)cos Ix (2.12)
o,, = qlly)cos Ix

Oy = Tly)sinix

with
wiy) = —f
Wity = f
g == .13)

1
@q(fy) =Qm+Df'=f"

ér(ly) - f

These results provide complete solutions of a large variety of problems.
Basic solutions of the differential equation (2.10) are of the type

f=e (2.14)
where f satisfies the characteristic equation
B*—2mp*+1 = 0. (2.15)
In the present analysis we shall assume
N>Q (2.16)
hence
m>1 2.17)

The limiting case N = @, m = 1 corresponds to an isotropic medium. Under the assump-
tions (2.16) and (2.17) the four roots of the biquadratic equation (2.15) are always real.
Two of the roots f#;, and f, are positive. They are

By =[m+/(m*-1)J*
B = [m—(m* -} (2.18)

the radicals being chosen positive.
These roots satisfy the conditions

BB, =1 1+B7 =2m (2.19)

The other two roots are the negative values —f; and —f,.
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With four arbitrary constants C; the general solution of the differential equation (2.10)
is
f=C P4 Cyefr 1 Cye PV 4 Cye™bolv, (2.20)

3. SKIN EFFECT UNDER TANGENTIAL SURFACE LOADS

Consider the elastic half space occupying the region y < 0 with the plane boundary

y=0.
Solutions which vanish at y = — oo are obtained by putting C; = C, = 0 in expres-
sion (2.20). Such a solution retains only two arbitrary constants and is written
f=C/Hi+Caofy (3.1)
with
f = efrly
' (32)
fz = efaly

The salient feature in which we are interested in here is a consequence of the fact that
if N/Q is sufficiently large, hence for large anisotropy, the value if 8, is large while §,
is small. For example let us assume

N/Q = 45, (3.3)
From equations (2.18) and (2.19) we may write approximately
p,=.J/Cm)=4
1=y (3.4)
frx =3
= Jem o *
Hence
B
== 16. 3.5
8, (3.5)

In this case although N/Q is not really very large we see that §, may be considered small
relative to . Therefore the function f; decays much more rapidly than f, when we move
away from the surface.

Skin effect
We choose values C; = —1, C, = 1 for the constants in the solution (3.1). Hence
f=hHh~fi (3.6)

We substitute this expression into equations (2.13). After taking into account relations
(2.19) we find the following equations for g and <

1
”Q‘Q(I.V) =B+ B)(fa—f1)
3.7

1
ar(ly) = (1+BDfi—(1+ 8D fo
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Aty =0wefind f;, = f, = I and g = 0. Hence expressions (3.6) correspond to a solution
for which the normal stress o, at the surface is zero. Because f; > f, the value of the
tengential stress 7 is given approximately by

I
ar(ly) = pifi. 3.8)

This value decays rapidly with depth as shown schematically in Fig. 1. It decreases by a
factor 1/e at a depth

_ 1 _ <
B 2nB,

where & = 2n/l is the wavelength of the tangential surface load distribution. With the
approximation (3.4) we may also write

b (39)

. Z
= 2n/(2m)’
The length 6 represents a “‘skin thickness”. It is proportional to the wave length and

decreases approximately as the inverse square root of the “anisotropy ratio” N/Q. For
N/Q = 45 its value is

F) (3.10)

4
o= _—. 1
% (3.11)
By substituting expression (3.6) for f into the first two of equations (2.13) we may also
derive the values of the displacements U and V. At the surface we find V = 0. Hence the
tangential load produces no vertical displacement at the surface. We also obtain

7(0) = 2./(NQ)IU(0) (3.12)

where 7(0) and U(0) are the tangential load and tangential displacement at the surface.
Equation (3.12) agrees with earlier results [1, 3].

Stress concentration
Consider the normal stress distribution o, = r(ly) as a function of the depth at the
abscissa x = 0. Substitution of expression (3.6) into the third of equations (2.13) yields

1
ar(l,\’) = Bi(1+B3) fi = B(1+ B f>- (3.13)
Hence for f, > f§, we write approximately
1
-Q—r(ly) = Bifr (3.14)

This value also decays rapidly with depth and exhibits the same skin effect as the shear
stress 7. In addition, comparison with the value (3.8) of 7 leads to the relation

r=p (3.15)

This shows a stress concentration corresponding to a magnification of the shear stress ©
by a factor f§,. This magnification increases approximately as the square root of the
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anisotropy ratio N/Q. The skin effect and the magnification of o,, are illustrated in
Fig. 1.

4

4
3

FiG. 1. Skin effect due to a tangential load distribution ¢, = t(0) sin Ix of wavelength & = 2=/l
applied at the surface y = 0. Distribution with depth of stresses g, and o,, is shown respectively
at x = 0 and x = #/4. Values of r(ly) and t(ly) are both positive.

An important feature of this stress concentration is its independence from the wave-
length.

4. ANISOTROPIC ELASTICITY WITH INITIAL STRESS

A similar skin effect is obtained in the case of an anisotropic solid with initial stress.
The discussion is carried out as in the previous case by applying the theory of initially
stressed anisotropic solids. [1, 2].

The anisotropy in this case may be “intrinsic” or “induced”. What is meant is that
the anisotropy may be present in the material initially in the stress-free state or it may be
induced by the initial stress itself. In any case the anisotropy which we consider here
refers to incremental properties. The principal directions of the initial stress as well as
those of the elastic symmetry are assumed to coincide with the coordinate axes. For
simplicity we shall again assume the medium to be incompressible. This implies relation
(2.2).

The incremental stress-strain relations in this case, are [1, 2],

S11—8 = 2Nexx
Szz—s = 2Neyy (4.1)

St2 = 2Qexy

where s, $,, 5,, denote incremental stresses referred to locally rotated axes with incre-
mental elastic coefficients N, Q. The local rotation is

I{ov Ou

The elastic coefficients N, Q will in general be functions of the initial stress.
Let the initial stress be reduced to a single principal component S;, = —P in the x
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direction. Because the medium is incompressible this does not restrict the generality

since the addition of an initial hydrostatic stress has no effect on the deformation.
The equilibrium equations for incremental stresses are

0syy 08, _Cw

ox | ay oy
(4.3)
053 08, 0w

—+—=—=-P—=0.

ox 0y Ox

These equations are solved as in the case of the initially stress-free medium. The displace-
ment u, v is expressed by the same relations (2.6) in terms of a function ¢. We may write
a general solution in the form

1
¢ = l-zf(ly) sin Ix
. 4.4)
s = L{m+3-3k*)f"—f"]
with
2M—L , L-P
m= 2 k? = T
4.5)
M = N+iP L=Q+3P
The function f satisfies the differential equation
[ =2mf"+k*} =0 4.6)

where the prime denotes a differentiation with respect to ly. From the function f it is
possible to derive the displacements using the representation (2.12). The displacements
are given as in equation (2.13) by

10(ly) = -1’

Wily) = f.

4.7)

Similarly the incremental stresses s, S,, S;, may be expressed in terms of f. However
for our purpose we shall evaluate the following expressions
= r(ly) cos Ix

tyy = 81— Pey,

t,, = S5, = g(ly) cos Ix 4.8)
A, = sy,+Pe,, = 2Le,, = t(ly)sin Ix.

The physical significance of these quantities is discussed in detail in the author’s book [1]
(pages 87, 125, 206). The quantities s,, and A,, are respectively the normal and tangential
stresses on a surface initially perpendicular to the y axis. The quantity ¢, is the incre-
mental normal stress per unit initial area initially perpendicular to the x axis. In terms of
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S we derive
1
L) = =f'=f"
qu(ly) =Q2m+Df'—f" (4.9)
1 ’ .
Fill) = =f—1"

An exponential solution f = exp(Bly) of the differential equation (4.6) is obtained when f
satisfies the characteristic equation

B*—2mp*+k* = 0. (4.10)
Two of the roots may be written
By = [m+/(m*—k?)]*

4.11
BT @

The other two roots are then — f; and —§,.
In the present analysis we shall again assume the inequality (2.16), hence m > 1. In
this case

P
m?—k? = m2—1+z > 0. (4.12)

Therefore \/(m*—k?) may be chosen as a positive real quantity. The value (4.11) of 8,
is real and may also be chosen as positive. The value of f, may be real or a pure imaginary.
If

P<L (4.13)
the value of 8, is real and is then chosen positive. If

P>L 4.14)

the value of §, is a pure imaginary and we may write it as
B, =i (4.15)

where £ is a positive real quantity. The biquadratic (4.10) implies the following relations

BB, =k B+ p3 = 2m. 4.16)

When k? is negative 8, is imaginary. In order to be consistent with equation (4.15) we
choose for k the velue with a positive coefficient of i.

It is of interest to note the formal identity of equations (4.7) and (4.9) with the corres-
ponding equations (2.13) for the medium initially free of stress. The general solution for f
in the case of initial stress is formally the same as expression (2.20) where the values of the
roots B, and f§, are now given by equations (4.11).
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5. SKIN EFFECT OF SURFACE INSTABILITY

An anisotropic incompressible half-space occupying the region y < 0 is under the
initial compressive stress P parallel to the free surface (y = 0).

The author has shown [1, 3] that there is a critical value of the compression P for
which the surface is unstable. The critical value of P is smaller than L. Hence, as pointed
out in the previous section, the roots §, and f§, are real and chosen positive.

A solution of the differential equation (4.6) is

f=Cfi+C.f; (5.1)

where f, = exp(8,ly) and f, = exp(f,ly). This solution vanishes at y = — co. We choose
the constants

C,=—(1+p3% C,=1+p3 (5.2)

Actually these constants may still contain a common arbitrary factor. This is a consequence
of the fact that we are dealing with homogeneous boundary conditions and that solutions
are valid with an arbitrary amplitude. For simplicity in the present analysis this factor

is not included.
Substituting the values (5.1) (5.2) into the third of equations (4.9) we derive

1
7 = 1+pH0 +B)(fi— 1) (5.3)

Hence t = 0 for y = 0 and there is no tengential stress at the surface.
The same substitution of f in the second of equations (4.9) after taking into account
relations (4.16), yields

1
EQ(IY) = (1+ BB f,— Br(1+ By (54)
The normal stress g vanishes at the surface y = 0 if
(1+BDB,—(1+B3)B, = 0. (5.5)

This is the condition which determines the critical compression P for instability of a free
surface. Using relations (4.16) and eliminating the common factor §, —f, we obtain
condition (5.5) in the form

2k(m+1)+k*—1 = 0. (5.6)

This equation was obtained previously and discussed in detail by the author [1, 3].
Finally we substitute the expression (5.1) for f into the first of equations (4.9). We derive

1
= +BD(L+BD)(B1f1—B21o). (5.7)

As before consider the case of strong anisotropy, hence N » Q, m > 1. The instability
condition (5.6) may be solved approximately for k. Hence

1

=~ 3T T k<l (5.8)
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From the definition (4.5) of k? we derive the critical compressive stress

1

This value is only slightly smaller than L. Approximate values of the characteristic roots
are obtained from equations (4.11) and (4.16). They are written

B, = \/(2"‘)
g, = k 1 (5.10)
T B 2JCmym+1)

Expressions (5.3) and (5.7) may be written approximately

1
‘L‘T(IY) = %(fx"‘fz)
(5.11)

1
Zr(l}’) = ﬁ?fx-

The stress distribution as a function of depth is represented schematically in Fig. 2.

Zra -

Fi1G. 2. Skin effect of surface instability under initial compressive stress P with surface deflection

vy = Vcoslx. Plot shows distribution of incremental stresses t;; = r(ly) at x = 0 and A, = 7(ly) at

x = £/4. Values of r(ly) and (ly) are respectively positive and negative. The sign is not indicated
in the plot.

Since f, is quite small the function f, decays very slowly and may be replaced by unity
near the surface. The term f, varies rapidly by a factor 1/e through a distance 6 which
represents a skin effect and is the same as in the previous equations (3.9) and (3.10). Hence
we write approximately

&£
& —— 12
o 2n,/(2m) (5.12)
where & is the buckling wavelength. Putting
T.(ly) = LBi £,
(5.13)

T,(ly) = _Llﬁfz
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equations (5.11) become
w(ly) = 7,(Iy)+72(ly)
r(ly) = Bit.(ly).
The second equation shows the same stress concentration factor f, = ./(2m) as in
equation (3.15).
The instability condition (5.5) is independent of the wavelength. Assuming a vertical

deflection v = VcosIx and applying the second of equations (4.7) we derive approxi-
mately

(5.14)

1
Wiy = pif; = —7 ) (5.15)

Hence the tangential stress A2 corresponding to the term 7,(ly) may be written

) . aov
A = tly)sinlx = L—. (5.16)
O0x

This expression varies very slowly with depth and may be assumed independent of y
within the skin thickness. As a consequence we derive the approximate value

d
A2 = 1,(0)sin Ix = L% (5.17)

where v, is the surface deflection. Since 1, + 1, = 0 at the surface we also derive

. d
1(0)sin Ix = — L2, (5.18)
dx

Numerically the assumption of large anisotropy turns out to be already appreciable
for values of M/L which are not large. For example if M/L = 4-5 we derive the same
approximate values f§; =~ \/(2m) =4 and f§, = 1/\/(2m) = 1/4 as in equation (3.4).

6. INTERNAL BUCKLING WITH SKIN EFFECT AT A FREE BOUNDARY

Internal buckling occurs for P > L. This phenomenon was analyzed in detail by the
author for an indefinite or confined medium {1, 2]. It was shown that there are two types
of internal buckling in anisotropic media which we have referred to as internal buckling
of the first and second kind.

We shall assume as before that m > 1. From previous results it follows that only
buckling of the first kind is possible in this case. The root f, is real while §, = if is a
pure imaginary. Relations (4.16) for the roots may be written

&=k  pi—&=2m

/)

A solution of the differential equation (4.6) corresponding to the characteristic roots

(6.1)
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B, = xilis
f3 = sinély. 6.2)

We substitute this value for f in the second and third of equations (4.9) after taking into
account the second of relations (6.1), we derive

Lax(y) = (14 e cos gly
6.3)

Lealy) = —(1-&)sin &y

The subscript 3 is used to indicate that these values are those associated with the solution
/5. The displacements are obtained from equations (4.7)

IUs(ly) = —¢&cosély
IVi(ly) = sin Ely.

The tangential stress t and the displacement V vanish for y = 0. They also vanish for
y = h provided

(6.4)

n_&
Ih™ 2h

where % is the wavelength along the x direction.

Hence the solution (6.2) represents the internal buckling of a medium subject to a
compression P and confined between two rigid frictionless parallel walls separated by a
distance h as illustrated in Fig. 3(a). Since i€ is a characteristic root, equation (4.10) is
verified by substituting f = i&. If we solve the resulting equation for P we obtain

P = L+2(2M — L) + L&*, (6.6)

¢ = (6.5)

This is the value of the compression P required to maintain an internal buckling mode
of wavelength ¥ = 2h& as shown by relation (6.5).

Equation (6.6) coincides with the result obtained previously in a detailed analysis of
internal buckling of a confined medium [1, 2]. As pointed out these buckling modes are
metastable. For a given value of P > L there is a continuous range of unstable modes
with wavelengths between zero and the value corresponding to equation (6.6). As before
we assume the anisotropy to be large. Hence

_2M-L
T L

(a) (b)

[ )y
T FREE SURFACE
h T
L ———,
e | _feroPrg

| -

Zz

FIG 3. (a) Internal buckling of a confined medium under initial compressive stress P. (b) Internal
buckling of the same medium with a free surface at y = h/2.

m

> 1. (6.7)
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Approximate values of §, and ¢ in this case are

B, = \/(2'")

k' 1{p (6.8)
“=5 -/ [ﬁ(r‘ﬂ'

Furthermore it is assumed that P is only moderately larger than the lower critical value

L. Hence
¢kl (6.9)

Under these conditions we derive from (6.3) the approximate values

1
79 = B3&cos Ely

: (6.10)
Z1:3(ly) = —sinély.
Using equations (6.4) and (6.10) we obtain
g3 = —13p3¢ cot Lly
} e 6.11)
T3 = —LIV3.
Introducing the definitions (2.12) and (4.8) the last equation may be written
v
AY) = L—. .
= Lo (6.12)

Hence the tangential stress A associated with the solution f; is determined approxi-
mately by the horizontal derivative of the vertical displacement v.

We now assume the presence of a free surface at y = h/2 as illustrated in Fig. 3(b).
In order to cancel the stresses g3, 75 at the free surface we must add a solution correspond-
ing to the characteristic root f,. Such a solution is

Cify = Cy e (6.13)
with an undetermined constant C,. The stresses r,, g, T, generated by this solution are
obtained by applying equations (4.9). When f, is large their approximate values are given
by

1

Z"l(’)’) = _Clﬁ%fl

1

qu(l.\’) = CB1fi (6.14)

1
Zfl(l)’) = = Clﬁ%fl'

By superposition of the solutions f; and f, the total normal and tangential stresses at
the free surface y = h/2 are made to vanish by choosing the constant C, such that

(1) o
T3 3 Ty 5— =
Ih Ih
= I -o.

ol

(6.15)
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Elimination of C, exp(f,lh/2) between these two equations yields
Ih
tan ¢z = Bie. (6.16)

Referring to the values- (6.8) of ¢ and B, we see that equation (6.16) determines the com-
pression P required to maintain a buckling mode of given wavelength & = 2n/l in the
presence of a free surface.

The foregoing analysis shows that the influence of the free surface is embodied essen-
tially in the term C, f; given by expression (6.13). It decays very fast with the distance
from the free surface and gives rise to a skin effect with the same skin thickness J as in
equation (3.10)

4
© 2n/(2m)
The tangential stress is the sum of two terms. One of these terms is 75(ly) as given by

equation (6.10). It varies slowly with y and is almost constant within the skin thickness.
The other term according to equations (6.14) may be written

s (6.17)

Tl(ly) = Tl(%) ef:lly—(h/2)) (618)

and decays very fast within the skin thickness.
Equations (6.15) also show that the tangential stress 7, is associated with a normal
stress r, parallel to the surface and equal to

ri(ly) = Byt,(ly). (6.19)

This relation exhibits the same stress concentration factor B, as in the foregoing equations
(3.15) and (5.14).

The solution f; contributes only a small value ry(ly) to the total component #(ly)
and may be neglected. Hence the total stresses 7 and q within the skin thickness are
distributed as in Fig. 2 for the case of surface instability.

Note that according to equation (6.12) the approximate value of the stress com-
ponent 7,(lh/2) = —15(lh/2) at the surface is given by

11(%) sinlx = — %5;9 (6.20)

where dvy/dx is the surface slope. A similar result was derived for surface instability as
shown by equation (5.18). Let us also examine the significance of the buckling condition
(6.16) and consider the case where B3¢ is large. This implies a large value of tan(¢lh/2)
and we may write approximately

Eh = (6.21)

The value of £ thus obtained coincides with the value (6.5). Hence in this case the buckling
mode and the compression P required for buckling with a given wavelength % is approxi-
mately the same as for a confined medium of twice the total thickness. The only specific
feature due to the free surface occurs in a thin layer of thickness é near the surface.

The range of validity of the assumptions may be illustrated by considering the
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numerical values

L_1 M_,
(=5=1 T=45 (6.22)
hence
By = (2m) =4 (6.23)

In this case B3¢ = 16 and equation (6.16) is approximately verified by putting élh = n
in accordance with the value (6.21). Hence the critical compressive stress is not affected
significantly by the presence of a free surface and is very close to the value (6.6) derived
for a confined medium. The foregoing numerical values also imply P = 2L. We note
that the assumptions we have introduced are already verified if m is not actually very large.

Relation to the theory of plate stability
Examination of Fig. 3(b) shows that the problem of internal buckling in the presence

of a free surface and a frictionless rigid boundary is identical to the case of instability
of a thick plate for deformations symmetric with respect to the plane of symmetry. The
plane of symmetry corresponds to the rigid frictionless boundary in Fig. 3(b).

The theory of plate stability under a compression P parallel to the faces has been
developed in detail by the author [1, 4, 5]. The condition for occurrence of a symmetric
buckling mode in a plate of thickness h was found to be

R,z;—R,z, = 0. (6.24)

This equation is given on page 328 in the author’s book [1]. For static buckling and an
incompressible material we may write

R, = (1+p3)? R, = (1+43)

1 Ih 1 th (6.25)

Zy = —tanh{ B, — zy = —tanh{f,— ).

1 ﬂl (ﬁl 2 ) 2 BZ (ﬁZ 2 )

When f, = i£ and for large real values of f§; equation (6.24) becomes -
1 Ih
3_ 2 —_— =

i é:tanéz 0 (6.26)

which is the same as the approximate buckling condition (6.16).

7. INTERNAL BUCKLING WITH SKIN EFFECT AT A RIGID ADHERING
BOUNDARY

Consider the internal buckling illustrated in Fig. 3(a) and assume that perfect adher-
ence occurs at the upper rigid boundary y = h. As we shall see the effect of the adherence
is to produce a disturbance confined near the boundary.

The initial stress is a uniform compression P parallel to the boundary. In the present
case such a state of stress could be produced by deforming the medium homogeneously
with a variable gap between frictionless rigid boundaries after which the upper boundary
is made to adhere to the deformed medium. Another procedure would be to use as upper
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boundary a very strong medium which is deformed homogeneously under very high
stress by the same amount as the confined medium.

The internal buckling solution f, generates at the upper boundary displacements
U,(lh) and V;(lh) obtained by substituting y = h into equations (6.4),

1Us(lh) = —&coséh

(1.1)
IVy(lh) = sin &lh.

Perfect adherence requires cancellation of these displacements by adding the solution
C,f, = C, exp B,ly of equation (6.13). By applying equations (4.7) the displacements
U,, V, associated with the solution C, f; are found to be given by

1U(Ih) = —C By exp Bylh

(12)
lVl(lh) = Cl eXp ﬂllh'

Perfect adherence requires
Us(ih)+ Uq(lh) =0

(7.3)
Va(lh)+ Vy(lh) = 0.
Elimination of C, exp(B,lh) between these two equations yields the approximate buckling
condition

tan &lh = &/B,. (74)

Assuming the same numerical values (6.22) and (6.23) as in the previous case, equation
(7.4) is approximately verified by élh = n which coincides with the values (6.5) and (6.21).
Hence the buckling condition is not significantly affected by the adherence.

The term C,f; in the total solution represents the disturbance introduced by the
adherence. Its effect is confined near the boundary with a skin effect of thickness d given
as before by equation (6.17).

The stress disturbance within the skin thickness is given by equations (6.14). Relation
(6.19) with the stress concentration factor f, is also applicable.

8. SKIN EFFECT OF SURFACE WAVES INCLUDING THE
INFLUENCE OF INITIAL STRESS

A skin effect of a type entirely similar to that analyzed above occurs for surface waves
in anisotropic solids. This can be seen immediately by applying the equations derived
by the author for the dynamics of anisotropic media under initial stress [1, 4]. The results
are of course valid for the particular case of the initially stress-free medium.

The same solutions as used in Section 5 for surfaceinstability are applicable to
dynamics with two characteristic roots 8, and f,. The roots in this case depend on the
circular frequency a and the density p. For example for an incompressible solid they are
obtained from the same equation (4.10) where the coefficients as derived by the author
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[1,4] are
1 a’p
(8.1)
1 a’p
2= _(L-P-=F).
o
Under the assumptions
m> 1 0<k?<l (8.2)

the roots B, and f, are real, with a large value for §, and a small value for §,. Proceeding
as in Section 5 it can be seen that exactly the same skin effect is obtained as for surface
instability.

Skin effect for compressible solids

In the preceding analysis it was assumed for analytical simplicity that the solid is
incompressible. The skin effect also occurs for strongly anisotropic compressible solids
and may easily be evaluated numerically by applying the general equations derived by
the author for the dynamics of anisotropic compressible media under initial stress [1, 4].

The skin effect features are obtained in terms of characteristic roots §, and j, re-
spectively large and small and are essentially the same as in the various cases considered
in the foregoing analysis for an incompressible solid. Values of the roots f, and B, are
expressed by the same formulas (4.11) in terms of the two basic parameters m and k2.
However in this case these parameters depends on the various elastic moduli describing
the elastic properties of the compressible anisotropic medium. The complete expressions
for m and k? in this case will be found in the author’s previous book and paper [1, 4].

9. SKIN EFFECT IN ANISOTROPIC VISCOELASTICITY

From the principle of viscoelastic correspondence [6,7] we may conclude that a
skin effect will also occur in a strongly anisotropic viscoelastic material. Of particular
interest is the case of a purely viscous anisotropic medium. For example the analysis of
Section 3 is immediately applicable to this case since N/Q is replaced by the ratio of two
viscosity coefficients and the characteristic roots remain algebraic quantities independent
of any operator. The skin thickness is given by the same expression (3.10). Applicability
of viscoelastic correspondence to such materials including the effect of initial stress was
already indicated in earlier work [7] and has been discussed in detail more recently [8].
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Résumé—1I1 est démontré que dans la mécanique solide un effet pelliculaire est relié a I'anisotropie. Prés d’une
surface libre ou surface de discontinuité, certaines composantes du champ des tensions varient rapidement de
zéro 3 un maximum a l'intérieur d’une pellicule mince. L’épaisseur de cette pellicule tend & fondre pour une
anisotropie allant en augmentant. Une concentration de tension a également lieu, par laquelle certaines com-
posantes dés tensions sont amplifiées 4 l'intérieur de ’épaisseur de la pellicule. L’analyse est entreprise pour
un milieu avec ou sans contrainte initiale et comprend les cas d’instabilité de surface, de flambage interne et
de propagation d’ondes de surface. Les résultats présentés dans le contexte de la théorie de I'élasticité sont
en général valables pour les milieux viscoélastiques selon et principe de la correspondance. Les résultats sont
également applicables & des materiaux composés a couches multiples ou fibreux qui, en moyenne, se comportent
approximativement comme des milieux continus anisotropes.

Zusammenfassung—Es wird gezeigt, dass.in der Festkérpermechanik Hauteffekt und Anisotropie miteinander
vebuden sind. In der Nihe einer freien Oberflache oder einer Diskontinuitits-Oberfliche dndern sich gewisse
Komponenten des Spannungsfeldes in der diinnen Haut schnell zwischen Null und dem Maximalwert. Die
Dicke dieser Haut verschwindet ganz wenn die Anisotropie zunimmt. Ferner wird die’ Spannung auch kon-
zentriert indem gewisse Spannungs-Komponenten innerhalb der Hautdicke verstarkt werden. Die Analyse
wird fiir Material mit oder ohne Anfangsspannung durchgefiihrt einschliesslich der Fille mit Instabilitit der
Oberflache, mit innerem Knicken und Oberflichen-Wellenausbreitung. Die Resultate werden in Rahmen der
Elastizitatstheorie gegeben, dem Korrespondenzprinzip entsprechend gelten sie auch fiir viskoelastische
Materialen; sowie auch fiir mehrschichtige und faserige Materialen, die sich allgemein und ungefdhr wie
kontinuierliche anisotropische Materialen benehmen.

AGcrpakT—Iloka3biBaercsi, YTO B MEXAHHKE TBEPABIX TEJ CKMH-3Q(EKT CBA3AH ¢ aHM3OTpomHeii. B6au3u
cBOGOAHON MOBEPXHOCTH M/IM NOBEPXHOCTH pa3phblBa HEKOTOPHIE COCTABHLIE YACTM TOJA HANPSKEHHs
6BICTPO H3MEHAIOTCA € HYJIst 10 MAKCHMYMA B IIPEAEsIaX TOHKOTO HAPYKHOTO CJ10A. TOJMIIMHA 3TOTO HapyX-
HOTO CJIOSl CTPEMHUTCA K HYJTIO C yBennuvBaroineiica aHu3orponueli. KoHUeHTpalusa HanpsHkeHUs I101y4aeTcs
TakXe HOCKOIbKY HEKOTOPbie KOMIIOHEHTh! HANPAXKEHHS YCHJIMBAIOTCA B IpPEAE/ax TOJLIMHBI HAPYKHOTO
C/10si. AHAJIH3 NPOBOJIMTCA IR CPeAbl (MaTepHasa) C HaYalIbHBIM MM 6¢3 HAYANBHOIO HANPSKEHHS H
BKJIIOYRET Cily4ait HEYCTORYUBOCTH MOBEPXHOCTH, BHYTPEHHErO BLIMYYHBAHMSA M PACIPOCTPAHEHUA NOBEpX-
HOCTHO#M BOJIHBI. Pe3ynbTaThl NIPeACTaBNeHbl B KOHTEKCTE TEOPHHM YOPYTOCTH H B OOLUEM M LIENOM UEHHbI
IUIS BAIPKO-3JIACTHYHOH Cpelbl, COTJIACHO NMPHHHMIY COOTBETCTBHA. Pe3ynbTaThl Takke NPHMEHAIOTCH B
Cllyyae MHOTOCIOHHLIX WJIM BOJOKHUCTBIX CIOXHBIX MaTepHalioB, KOTOpbIC, B CpeIHEM, Beayr cebs,
npuGIM3MTENBbHO, KaK AHH3O0TPONHASA HeNpepbiBHAA CPela.



